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Abstract

Heretic is an artificially intelligent computer music system to be used within the context of

human-machine free improvisation. Heretic is written in the SuperCollider programming

language with specific aspects of the system implemented in the machine learning soft-

ware Wekinator. The motivation behind Heretic’s inception was to create an autonomous

system that uses my own improvisational methodology as a computational and conceptual

framework for machine improvisation. To achieve this, Heretic’s architecture is divided

into three interdependent modules: Interpretive Listening, Contextual Decision Making,

and Musical Synthesis. Each of these modules serves an important musical function for the

spontaneous creation of novel improvised music. When working collectively, these modules

are a complete computational model of my improvisational methodology that interacts with

human improvisers in real-time. Heretic is trained on my approach to improvisation, but

through its interactions with a human performer, Heretic’s own improvisational voice and

modes of musical expression emerge. This thesis provides a background and history of

previous autonomous computer improvisers and how these systems were developed, thus

creating a context for my approach to Heretic’s development. This thesis also describes im-

provisational and compositional methodologies that form a basis for my own improvisational

methodology and Heretic’s design. Following this overview of methodologies, I discuss

specific musics that formed my approach for crafting Heretic’s sonic aesthetic and musical
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voice. Subsequent sections discuss how these concepts and aesthetics are implemented

within Heretic using machine listening, machine learning, and interactive computer music

techniques. Finally, I detail how Heretic was tested with aesthetic consideration, provide

a formal analysis of music created with Heretic, provide conclusions yielded from my

performances with Heretic, and discuss future work that will develop from this research.
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1
Introduction

Heretic is an artificially intelligent computer music system to be used within the context of

human-machine free improvisation. Heretic is written in the SuperCollider programming

language with specific aspects of the system implemented in the machine learning software

Wekinator [26, 78]. The motivation behind Heretic’s inception was to create an autonomous

system that uses my own improvisational methodology as a computational and conceptual

framework for machine improvisation. To achieve this, Heretic’s architecture is divided

into three interdependent modules: Interpretive Listening, Contextual Decision Making,

and Musical Synthesis. Each of these modules serves an important musical function for the

performance of novel improvised music. When working collectively, these modules are a

1



complete computational model of my improvisational methodology that interacts with a

human improviser in real-time. Heretic is trained on my approach to improvisation, but

through its interactions with a human performer, Heretic’s own improvisational voice and

modes of musical expression emerge.

Like any human improviser, Heretic behaves autonomously. In term’s of Robert Rowe’s

definitions of "player" and "instrument" paradigms within interactive computer music

systems, Heretic’s functionality fits the category of a "player" program [63]. Heretic is not

an instrument to be controlled by a performer; Heretic generates and controls its own musical

output by listening to the present musical moment, interpreting what it hears, making a

musical decision based on this information, and then synthesizing its decision as music.

This approach to teaching Heretic how to improvise is analogous to many methodologies

within improvisation pedagogy [5]. The teacher provides a student with a musical tool-kit

that is based on the teacher’s own knowledge and experience. The student then uses this

tool-kit as a basis for addressing their own needs within any improvisational context. I have

provided Heretic with a methodology (or a tool-kit), and Heretic autonomously implements

this methodology according to its own perception of the current musical context. This is

how an improviser develops their own voice or sound, by learning what has come before

them and interpreting this information through their own experiential lens. As eloquently

stated by guitarist Joe Morris, "you can’t play what you don’t know" [44].

Systems similar to Heretic often prioritize agnostic approaches to machine improvisation

by avoiding prior musical knowledge in the system’s training stage. These system’s creators

assert that a system’s autonomy and novelty are comprised with knowledge-based or gram-

matical approaches to improvisational decision making [34, 51, 83]. However, prominent

improvisers such as Cecil Taylor, Ornette Coleman, Joe Morris, and Anthony Braxton detail

their approaches to improvisation as languages or grammatical systems [2, 9, 41, 73]. These

improvisers contextualize the real-time musical materials of their band-mates by applying

their formulated grammatical systems to their decision making processes. I argue that a
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grammatical approach for organizing an improvisational vocabulary yields idiosyncratic

interactions, complete machine autonomy, and novel musical output when used within the

context of human-machine improvisation.

While Heretic is trained on my methodology as a human improviser, I intend for Heretic

to maintain its intrinsic computer-like traits as a means of achieving "mutual subversion" [5].

Mutual subversion is when a common musical language between two or more improvisers

is so collectively well-known, that the musicians are able to unpredictably test the confines

of this language by challenging the musical decisions of other players. Derek Bailey defines

"mutual subversion" in his seminal text Improvisation: its nature and practice in music, "a

common language [will] come into being, and a mutual trust in each other permits one to

push against the limitations of that language..." [5]. While Heretic can hear my language and

interpret its contextual meaning in real-time, Heretic also implements stochastic processes

when making decisions. In his book Machine Musicianship, Robert Rowe identifies a suc-

cessful machine improviser as a system that is able to "contribute a convincing musical voice

in a completely unstructured and unpredictable environment" [62]. Therefore, Heretic’s

carefully implemented Markov models enable unpredictable stochasticism that achieves

Bailey’s concept of mutual subversion, while also "contributing a convincing musical voice"

to an improvised context [5, 62]. Using stochasticism to challenge a human’s skill as an

improviser and the musical limits of an improvised performance are my main motivations

for designing an artificially intelligent computer music system. A human’s spontaneous

musical instincts combined with a machine’s autonomous, computer-like personality results

in novel and idiosyncratic music that bridges the sonic worlds of the human and machine.

In this thesis, I first provide a background and history of previous autonomous computer

improvisers and how these systems were developed, thus creating a context for my approach

to Heretic’s development. Also in this thesis, I describe improvisational and compositional

methodologies that form a basis for my own improvisational methodology and Heretic’s

design. Following this overview of methodologies, I discuss specific musics that formed
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my approach for crafting Heretic’s sonic aesthetic and musical voice. Subsequent sections

discuss how these concepts and aesthetics are implemented within Heretic using machine

listening, machine learning, and interactive computer music techniques. Finally, I detail

how Heretic was tested with aesthetic consideration, provide a formal analysis of the music

created with Heretic, provide conclusions yielded from my performances with Heretic, and

discuss future work that will develop from this research.
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2
Background

Heretic’s conceptual foundation centers around three interconnected sectors of research:

Live Algorithms, improvisational methodologies, and electroacoustic Music. Live Algo-

rithms research within the computer music field focuses on autonomous music systems

capable of human-compatible performance [6]. Through studying the practice and com-

putational methods behind developing Live Algorithms, specifically systems created by

Tim Blackwell, Oliver Bown, Michael Young, George Lewis, and IRCAM’s Music Repre-

sentations Team, I found that creating a Live Algorithm of my own required researching

improvisational methodologies that fit my musical and aesthetic goals for Heretic’s sonic

voice and interactive properties [8, 35, 37, 83].
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I have applied these methodologies to my own improvisational practice and to creating

Heretic. Specifically, Heretic’s functionality incorporates theoretical concepts from Joe

Morris’ The Properties of Free Music, Derek Bailey’s Improvisation: Its Nature and Practice

in Music, and Anthony Braxton’s Language Music [5, 9, 39, 44]. Heretic also uses concepts

proposed by Denis Smalley and Curtis Roads in their respective texts Spectromorphology:

Explaining Sound-Shapes, and Microsound [59, 70]. Smalley and Roads’ research in the

domain of electroacoustic music serves as a conceptual link between Braxton and Morris’

improvisational methodologies and Heretic’s emergent sonic properties via electroacoustic

sound worlds. Finally, my study of free improvisation facilitated the discovery of own sonic

aesthetic as an improviser and composer. I have particularly found sonic inspiration in recent

improvised electro-acoustic music, feedback electronics, free jazz, and Japanese Onkyokei

music. Later in this chapter, I discuss three albums that are representative of the aesthetic

inspiration found in these musical traditions. These albums include Event Horizon - Peter

Evans and Sam Pluta, Centering and Displacement - Frank Rosaly, and Color Quanta -

Toshimaru Nakamura and Kim Cascone.

Heretic’s conceptual foundation is a direct result of my experience as a percussionist,

improviser, and composer. I have extracted and synthesised various aspects from these

improvisational and compositional methodologies throughout my creative development as

a musician. Heretic is a combined manifestation of these methodologies resulting in an

abstract expression of my musical voice. I see this abstract expression of my musical voice

not as a direct mirror into my own improvisational practice, but rather a method of enabling

a common language between myself and Heretic [5]. Heretic demonstrates how a shared

improvisational language can be used as collaborative infrastructure between the human

performer and machine to spontaneously create ever-changing musical frameworks and

gestures.
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2.1 Live Algorithms

This section defines and explores Live Algorithms. First, Tim Blackwell, Oliver Bown, and

Michael Young’s research in autonomous computer improvisers provides a definition of Live

Algorithms, and various methods for creating Live Algorithms [7]. Second, I examine and

compare two Live Algorithms, George Lewis’ Voyager and IRCAM’s Music Representations

Team’s (RepMus) OMax. In this examination, I use Blackwell et al’s definition of a Live

Algorithm to describe the conceptual frameworks behind these systems’ designs, the precise

intentions behind their creation, how these intentions are implemented computationally, and

the music that emerges from these systems’ respective implementations.

2.1.1 Live Algorithms Research

In their paper Live Algorithms: Towards Autonomous Computer Improvisers, Tim Blackwell,

Oliver Bown, and Michael Young define a Live Algorithm as "an autonomous music system

capable of human-compatible performance. The context is improvised music; the Live

Algorithm listens, reflects, selects, imagines and articulates its musical thoughts as sound in

a continuous process" [6]. Their original motivation behind this research was "[to] emulate

human performance convincingly" [6]. However, the scope of Live Algorithms research now

extends beyond simply emulating human performance, Blackwell et al see Live Algorithms

"as a contributing and creative group member with the same musical status as any other

performer... The overarching aim is to extend the possibilities of music performance." [6].

Blackwell et al. also assert that a system must include qualities of "autonomy, novelty,

participation and leadership" to be considered a Live Algorithm [6]. Blackwell et al define

autonomy as the ability for the machine "to act and respond to unknowable and unforeseen

inputs in ways that have not be completely prescribed" [6]. Novelty is achieved by "[avoiding]

the cliched and the obvious" when "supporting, leading, or subverting" other musicians [6].

The quality of participation consists of "supporting ongoing musical activity by making
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contributions that do not detract from but rather enhance the current musical direction" [6].

Live Algorithms obtain leadership by "[attempting] to change the musical direction, to

invoke a new musical center" [6].

In order to design a system that adheres to these four qualities, Blackwell et al describe

a design methodology for creating a Live Algorithm, the PQF architecture. The PQF

architecture contains three modules that are used in various combinations to develop com-

puter music systems. These modules describe three basic computational functionalities,

and are the literal software components of a Live Algorithm. The modules are defined as

follows: P (listening/analysis), Q (performing/synthesis), F (patterning, reasoning or even

intuiting) [6, 7].

P functions as a real-time music information retrieval module, Q is a sound making

module, and F is the decision making module. P and Q are common within computer

music, however F, the autonomous decision making module, is what furthest separates

Live Algorithms from other sectors of computer music. Heretic’s architecture is modelled

after Blackwell et al’s proposed architecture. Heretic’s P module is defined as Interpretive

Listening, the Q module as Musical Synthesis, and the F module as Contextual Decision

Making.

To Blackwell et al, a Live Algorithm is not complete unless "these three modules

are present, interconnected, absent of a human controller, and such that the above four

characteristics (autonomy, novelty, participation and leadership) are ascribable attributes of

the system" [6]. Through Blackwell et al’s research in the domain of human-machine free

improvisation, I am able to design Heretic using their proven formalized methodology of

Live Algorithm development as a conceptual and computational benchmark. By using their

proposed architectural design scheme, and by evaluating Heretic according to their proposed

qualities that define a Live Algorithm, "autonomy, novelty, participation and leadership," I

am able to imbue Heretic with my own aesthetic values as an improviser while also ensuring

Heretic’s autonomy, creativity, and "musical coherence" [62]. In Chapter 4 of this thesis, I
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will use Blackwell et al’s criteria for a Live Algorithm as guidelines for evaluating a recorded

improvisation between myself and Heretic.

2.1.2 Previous Live Algorithms: Voyager

The first known Live Algorithm is George Lewis’ Voyager. Lewis developed the first version

of Voyager between 1986 and 1988 at the Studio for Elektro-Instrumentale Muziek (STEIM)

in Amsterdam. Voyager was written in dialectics of the Fourth programming language and

the current version is written in Max/MSP [77]. Lewis describes Voyager as:

"a nonhierarchical, interactive musical environment that privileges improvisation... impro-

visers engage in dialogue with a computer-driven, interactive ’virtual improvising orchestra.’

A computer program analyzes aspects of a human improviser’s performance in real time,

using that analysis to guide an automatic composition..." [37].

Lewis’ goal in creating Voyager was to imbue the system with a specific component of his

musical aesthetic. As stated by Lewis, "Musical computer programs, like any texts, are not

’objective’ or ’universal,’ but instead represent the particular ideas of their creators" [37]. The

"particular idea" Lewis focused on in Voyager’s development is derived from an aesthetic

associated with African visual art. "Multidominance" is a term coined by the visual artist

Robert L. Douglas to describe "the multiple use of colors in intense degrees, or the multiple

use of textures, design patterns, or shapes," or in musical terms, "the predisposition to use

multiple types of rhythm in musical construction speaks equally to a distinct aesthetic as

does the multiple use of visual elements" [37]. Lewis’ choice for Voyager to embody a sonic

aesthetic of multidominance is a reaction against Eurocentric notions of composition and

improvisation prominent in the creation of computer music systems, a reflection of Lewis’

comparative research in "Afrological" and "Eurological" improvisational practices [36]. In

Lewis’ own words "sudden changes of mood, tempo and orchestration, [eschew] the slowly
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moving timbral narratives characteristic of much institutionally based computer music...

Voyager is in clear violation of the dictum that Douglas identifies here as Eurocentric: ’Don’t

overcrowd your composition with too many elements.’" [37].

In terms of Blackwell et al’s PQF architecture, Lewis designs each of Voyager’s seperate

modules to yield an aesthetic of multidominance. Voyager interacts with the human’s

real-time pitch data via "a set of 64 asynchronously operating single-voice MIDI-controlled

’players,’ all generating music in real time... moving in and out of metric synchronicity, with

no necessary arithmetic correlation between the strongly discursive layers of multirhythm,"

which is an an essential quality to Douglas’ multidominance [37]. Lewis defines the human

interactions with Voyager’s decision making and corresponding musical output as "emotional

transduction" [37]. Emotional transduction is a feedback loop between the human’s musical

response to Voyager’s output, and Voyager’s musical response to the human performer. The

human and Voyager are constantly listening to each other, an inherent phenomenon in all

Live Algorithms [38].

The potential for the human performer and Voyager to influence musical change at a rate

of five to seven seconds allows for "dense, rapid accretions of sonic information" which is

inherent to Lewis’ aesthetic of multidominance [37]. The sonic breadth of Voyager’s output,

stemming from the large number of musical voices present, those musical voices’ number of

sonic manipulations, the potential for quick shifts in musical character, and the bi-directional

nature of interactivity epitomizes Lewis’ intended aesthetic of multidominance. Voyager’s

design and resulting musical output adheres to Lewis’ aesthetic intention, and Blackwell et

al’s four qualities of "autonomy, novelty, participation and leadership," making Voyager a

uniquely expressive Live Algorithm.

2.1.3 Previous Live Algorithms: Omax

The first version of OMax was released by IRCAM in 2004 and new iterations of this

system are currently in development under the names of SoMax and ImproteK [34, 50]. The
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most recent version is written entirely in Max/MSP, and the original version was written

in OpenMusic and Max/MSP, hence the name Omax. Omax’s creators describe the system as:

"...an improvising software which uses on-the-fly learning and generating from a live

source. It is capable of simultaneously listening to the audio stream of a musician, extracting

information from that stream, modeling this information into a complex formal structure

(think of a musical roadmap), then navigating this structure by recombining the musical

material to create variation(s) or ’clone(s)’ of the input" [33].

RepMus’ principal intention in creating Omax reflects their opinion of what "makes an

interesting improvisation," by making "clones" ("or stylistic models") of the human per-

former [34]. They believe in order for an improvisation to be "interesting," it must adhere

to a consistent musical style derived from the immediate musical material provided by the

human performer [33].

Omax’s implementation relies on machine listening, and a form of interactivity called

"stylistic reinjection" [35]. Stylistic reinjection is similar to Lewis’ concept of "emotional

transduction," in that it is a bi-directional feedback loop consisting of the computer analyzing

the human’s playing, the computer generating musical output based on this analysis, and the

human reacting to the computer’s musical output.

Omax’s musical output, or Q module, consists of samples collected from the human

performer that are rearranged in real-time. Omax’s P and F modules interact to generate

"clones" by organizing the human’s recorded samples via pitch and/or spectral analysis, and

then outputting these clones in response to an analysis of the human’s real-time playing.

Omax’s P module uses monophonic pitch or timbral tracking to slice the recorded audio into

"micro-units" [35]. These micro-units are determined by the "birth and death of significant

events," or the beginning and ends of musical phrases [35]. These sliced micro-units are

then grouped into larger "macro-units," based on their pitch or timbral similarity. Omax then
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"time stamps" these macro-units, determining when each macro-unit will be "reinjected"

into the musical performance. The process of time stamping macro-units comes from an

anticipatory algorithm referred to as a "factor oracle" [16]. Using Hidden Markov models,

the factor oracle anticipates the potential musical sequencing of the improvisation based on

the audio features extracted from the human musician’s real-time playing [4].

This model of interactivity generated by the F module, involves "recombinations of the

original discourse justified by the model and realized by cutting and pasting the original

material in real-time" [35]. This is a direct reflection of RepMus’ belief that a "balance

of recurrence and innovation makes an interesting improvisation" [35]. In this case, the

"recurrence" is the use of recorded audio from the human performer, and the "innovation"

being the rearrangement of this recorded material via the factor oracle and the use of

"stylistic reinjection" [35].

While RepMus states their goal is an "agnostic" system with no stylistic bias, I argue

that stylistic bias is impossible when designing a computer music system. Despite this goal

of agnosticism, RepMus describes Omax using language that contradicts their goal. For

example, they state that the "recurrence" of musical materials is what "makes an interesting

improvisation" [33]. They also state that Omax can sense the "birth and death of significant

events," but how can Omax know whether a musical event is "significant" or not without

being programmed to perceive this as their creator would? Whether or not the creator of

a Live Algorithm intends it or not, I believe a Live Algorithm’s musical output always

"represents the particular ideas of their creators," which is why I have intentionally and

explicitly programmed Heretic to create music using my own approach to improvisation [37].

2.2 Compositional/Improvisational Methodologies

This section details the improvisational and compositional methodologies that have shaped

my performance practice as an improviser and Heretic’s Interpretive Listening and Con-
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textual Decision Making modules. In regard to Heretic’s Musical Synthesis module, I will

examine musics that have informed my approach to Heretic’s sound design, and how this

sonic aesthetic differs from other Live Algorithms.

2.2.1 Interpretive Listening: Braxton, Smalley, Roads

In the context of collaborative free music, it is important to actively listen to and interpret

real-time musical material into an organizational framework. Heretic’s organizational

methodology stems from a combination of Curtis Roads’ time scale definitions, Smalley’s

Structural Functions and Anthony Braxton’s Language Music system [9, 39].

In Curtis Roads’ Microsound, he provides an overview of musical time scales, and how

these temporal definitions function in musical practice. Roads defines the macro-time scale

of musical structure as, "corresponding to the notion of form, and [macro-form] encompasses

the overall architecture of a composition" [59]. Roads asserts that there are two ways to

generate macro-form, top-down or bottom-up. In his words, "A strict top-down approach

considers macrostructure as a preconceived global plan or template whose details are filled

in by later stages of composition... By contrast, a strict bottom-up approach conceives of

form as the result of a process of internal development provoked by interactions on lower

levels of musical structure" [59].

The contextualization of low-level musical materials into a higher-level structure within

free improvisation is generated via a "bottom-up" approach to organization [59]. Improvisers’

ability to organize their band-mates’ spontaneous musical materials in real-time dictates

how they might musically respond, and how these interactions enable a formal structure

to emerge. In other words, improvisers are collectively searching for a balance of self-

organization and forward momentum. As Joe Morris states in his text Perpetual Frontier:

The Properties of Free Music, "Form is either stated or it emerges in process... Modulation

of tonal center or meter, dynamics, density, relation and expression of pulse, interactive

postures, introduction of different melodic structures, etc., all signify changes in form" [44].
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This ability to organize spontaneous musical materials into higher-level structural contexts

in real-time is rooted in a complete understanding of the collective and individual musical

languages of one’s band-mates. As Derek Bailey states, "a common language [will] come

into being, and a mutual trust in each other permits one to push against the limitations of

that language..." [5]. The practice of free improvisation is often associated with the use

of non-traditional musical materials, making this "common language" more difficult to

organize than forms of improvisation that operate using more traditional musical devices.

Improvisational idioms such as Bebop, North Indian classical music, and Flamenco,

describe low-level materials using traditional organization systems such as melody, harmony,

and rhythm. More idiosyncratic forms of improvisation such as free jazz, Onkyokei, or

noise music often use nontraditional musical materials that are difficult to abstract into these

traditional organizational frameworks [14]. Many practitioners of free improvisation have

developed their own organizational frameworks, such as Cecil Taylor’s Unit Structures,

Ornette Coleman’s Harmolodics, and Joe Morris’ Properties of Free Music [2, 41, 73].

Anthony Braxton’s Language Music is particularly effective due to its adaptability to the

characteristics of any instrumental and/or improvisational practice [9].

Figure 2.1: Smalley’s Structural Functions
[70]

With this concept of low-level versus high-level musical organization defined by Roads,

Denis Smalley provides description of movement between these high-level structures In

his text, Spectromorphology: Explaining Sound-Shapes [70]. His concepts of "gesture vs.
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texture", and "structural functions" are applied to collaboratively generating formal motion

within Heretic’s Contextual Decision Making module. For example, a musical state that

remains static with no momentum towards another state is a texture. A musical state that

builds from nothing to utter chaos over the course of a few minutes is an example of a

gesture. Within these two broad categories of musical motion, Smalley defines various

structural functions that can be applied to movement in between these broad descriptors of

musical state. For example, an "emergence" could be heard as a state of low-energy material

moving towards a state of high energy material. High-energy materials deteriorating to

silence is described as a "disappearance" (Figure 2.1). To understand the details of how

this macro-formal movement functions within Heretic, I will define Heretic’s low-level

organizational structure from which form "emerge[s] in process" [70].

Heretic uses a reinterpretation of Anthony Braxton’s Language Music system as a means

of organizing low-level musical materials into a fluid formal structure as described by Roads

and Smalley. Braxton describes his system as a "syntax of musical devices for solo alto

saxophone improvisation" [39] (Figure 2.2). Trumpeter Nate Wooley provides a more

detailed description:

"In essence, Language Music consists of a list of 12 ’types’ or descriptions of broad

musical parameters, which the performer uses to limit their improvisation... It may be

more accurate to call them starting points or springboards to musical activity. If taken

individually, this system provides a structural framework for improvising, breaking the

stream-of-consciousness trope that can weigh down free music" [81].

Using a syntax akin to Braxton’s Language Music system as applied to listening within

an improvisational setting is effective and flexible. Not only can this syntax accurately

describe abstract musical materials, but these groups of materials can also be used to define

higher-level formal structures within an improvisation. Graham Lock describes Braxton’s
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ability to do exactly that, "Braxton’s lecture at the Guildhall is to do with the way in which

the pool of ’language types’ that he has built up over the years can be employed in the

compositional process. He takes one example of his ’language types,’ staccato line formings,

and demonstrates its various functions for generating form..." [39].

Figure 2.2: Braxton’s Language Types
[39]

While Braxton’s Language Music system was designed for pitched instruments, my

personal Language Music system has been designed for my performance practice as an

improviser, percussionist, and electronic musician. My language system is organized into

ten language types, and is the basis for training Heretic’s Interpretive Listening module

to achieve "musical coherence" within a formal structure via implementing a "theoretical

hypothesis" as suggested by Eigenfeldt et al. in their paper Flexible Generation of Musical

Form: Beyond Mere Generation (Figure 2.3) [24]. Chapter 3 describes how my Language

Music system is used to train Heretic to hear, recognize, and organize unseen musical
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material from a human improviser into a formal structure. This Language Music system is

also used as an organizational framework for Heretic’s Musical Synthesis module (Section

3.4).

Heretic’s version of Braxton’s Language Music system is akin to syntactical organiza-

tional frameworks often used in electroacoustic music composition. According to Curtis

Roads’ definitions of various musical timescales, Braxton’s Language Music system would

be categorized in the "meso time scale" [59]. In Roads’ own words, "The mesostructual

level groups sound objects into a quasi hierarchy of phrase structures... the vocabulary of a

piece of music" [59].

Trevor Wishart defines the meso time scale as a sequence that consists of fields, and

orders [79]. A field is a collection of musical materials that adhere to "a particular natural

language," and an order is how these materials are arranged in time. Denis Smalley’s concept

of Spectromorphology also details a process for organizing low-level musical materials into

higher-level typologies [69]. Smalley describes Spectromorphology as, "not a compositional

theory or method, but a descriptive tool based on aural perception... It is intended to aid

listening... [and] how composers conceive musical content and form their aims, models,

systems, techniques, and structural plans" [70]. Like Braxton’s Language Music system,

Smalley’s Spectromorphology acts as a framework for contextual listening, and as a means

of organizing non-traditional musical materials into a structural hierarchy.

Roads, Wishart, and Smalley’s theories regarding the high-level organization of non-

traditional musical materials resonates with Braxton’s Language Music system. Understand-

ing the connection between these different organizational systems is essential to connecting

the act of improvisational listening to the process of enabling Heretic to contextualize the

low-level audio feature data from its Interpretive Listening module. In particular, connect-

ing Braxton’s Language Music to the organizational principles of electronic music aids in

designing how Heretic implements its own musical language in dialogue with the human

performer’s musical language.
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Figure 2.3: My reinterpretation of Braxton’s Language Types
[39]

2.2.2 Contextual Decision Making: Morris

The ability to hear and interpret real-time musical materials enables Heretic to make musical

decisions. Heretic’s Contextual Decision Making Module is based on a combination of

Lewis’ emotional transduction, Bailey’s mutual subversion and Joe Morris’ Postures of

Interaction. In regard to emotional transduction, Heretic’s decision making not only affects

its own musical output, but it also affects the human’s musical output. This is because

the human must actively listen to Heretic when formulating a musical response. While

Heretic’s Contextual Decision Making module is intended to exude "musical coherence"
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in its interactions with a human performer, it is also intended to "mutually subvert" the

human performer’s playing, testing the limits of the common language that emerges between

Heretic and the human performer [5, 62]. This is the logic behind using Markov modelling

to design Heretic’s Contextual Decision Making module. Markov chains are able to create a

generalized musical behavior, while maintaining an unpredictable disposition that yields

idiosyncratic interactions.

Morris’ postures of interaction describe both a concise approach for decision making

in non-solo free music contexts, and the possible ways one improviser can interact with

another during a performance. This collection of interactive postures formulates the basis for

Heretic’s Contextual Decision Making module. These postures are situated in a second-order

Markov Chain that generates an internal behavioral state that dictates the low-level aspects

of Heretic’s decision making process (Section 3.3). Morris’ Postures of Interaction are

defined as [44]:

Solo - "A solo is heard as a lead voice. The player plays with the intention that their playing

will be heard as a lead voice. Multiple players soloing is also possible."

Unison "Unison can mean playing the same notes, the same rhythm, with the same density,

to just at the same time... playing things that are exact or similar can be viewed as unison."

Complement - "Playing in support of a soloist or soloists, complementing the solo state-

ment. This posture depends on the player playing at a dynamic level and with a degree of

density that allows the soloist to be head as the lead voice."

Juxtaposition - "Playing something entirely different than another soloist or different than

what the ensemble is playing... [Juxtaposition] requires a complex combination of material

that differs completely from what is being played by others."

Silence - "Not playing. Not making a sound as an intentional posture." [44]

Morris goes on to describe the musical devices one could implement in order to express
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these postures in a musical context. One could liken aspects of these musical devices to the

language types described in section 2.2.1.

Layers: "Playing in dynamic layers that highlight the interactive relationship."

Density: "The proportion of sound made as an intentional decision."

Melody: "Melodic statements used as solo in free music can be meant to display of present

melodic structure that can be referred to by other players."

Tempo: "Increasing or decreasing the tempo in an individual or ensemble statement can

affect the posture of the interaction among players."

Chords/Clusters: "In complement or juxtaposition, chords and clusters of notes can signify

and clarify an interactive posture."

Sustain/Decay/Envelop: "The attack and decay time of a sound and its length of sustain

can signify and clarify its posture of interaction among players."

Non-Pitched Sounds/Noise: "Percussive, muted, unconventional uses of an instrument,

extended techniques that can make non-pitched sounds and any kind of noise can signify

and clarify a posture in the interaction among players."

Rhythmic Displacement and Pulse: "In unison, complement, and juxtaposition, rhythmic

displacement, stating or implying pulse and the use of melodic rhythms, can signify, and

clarify a posture interaction among players."

Repetition: "Repeating any material to signify and clarify a posture of interaction among

players."

Heretic listens to and interprets a human’s playing, considers the the current context

of what it hears, chooses a posture of interaction, and then synthesizes a musical response

using its own collection of language types. Section 3.3 of this thesis details how a series of

embedded Markov chains are used to design Heretic’s Contextual Decision Making module.
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2.3 Musical Synthesis: Pluta/Evans, Rosaly, Nakamura/Cascone

The Live Algorithms described in section 1.2 vary in sonic aesthetic and their approach to

audio synthesis. Voyager outputs streams of general MIDI sounds, OMax uses sampled

material from the human performer, and piano-prosthesis uses previously sampled piano

sounds with real-time electronic processing [35,37,83]. Heretic’s Musical Synthesis module

differs from these systems by expressing its musical language as a comprehensive laptop

improviser. Heretic applies real-time processing to the sound of the human performer,

manipulates audio samples, and controls digital synthesizers. This dynamic and fluid

approach to timbre reflects my aesthetic interests in improvised electro-acoustic music,

feedback electronics, free jazz, and Onkyokei music. This section contains references to

specific albums that I have found to be representative of Heretic’s sonic ambitions, however

these albums are not a comprehensive list of inspirational music. The following albums

serve as sonic benchmarks for Heretic’s Musical Synthesis module via the sonic palette and

musical interactions demonstrated by the musicians in these recordings.

2.3.1 Pluta/Evans

Sam Pluta is a composer, sound artist, and laptop improviser based in Chicago Illinois,

and Peter Evans is a trumpeter, composer, and improviser based in New York City. They

have worked together for many years in various musical contexts, including Evan Parker’s

Electro-Acoustic Nonet, Peter Evan’s Rocket Science, and as a duo. In 2014, Pluta and

Evans released an album of live free improvisations entitled Event Horizons [56]. The album

was released on Pluta’s record label, Carrier Records. The album’s liner notes read:

"With Event Horizon, Peter Evans and Sam Pluta have created a new musical language.

Bridging Evans’ efforts to explore uncharted sonic worlds for a traditional acoustic instru-

ment with Pluta’s customized and highly flexible software, their instruments are at some

points fused into a unified sonic entity indistinguishable as two voices, while at others
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engaged in violent counterpoint" [56].

Sam Pluta and Peter Evans’ duo project is an exemplary case of two musicians cultivating

a unified sonic voice. Pluta’s ability to sample, transform, and re-contextualize Evans’

playing in real-time, along with Evan’s virtuosic ability to acoustically reproduce electronic

sounds on the trumpet, enables this sonic melding to take a clear shape by means of an

interactive feedback loop between the two musicians. "Pluta’s customized and highly

flexible software," is rich with timbral variety [56]. This software is the subject of Pluta’s

Doctoral Dissertation at Columbia University, The Live Modular Software Instrument, which

like Heretic is written in the SuperCollider programming language [55]. On this record,

Pluta creates a sound palette ranging from bursts of asynchronous micro-sonic glitch, to

metrically pulsing noise, all the way to delicately sparse loops. Pluta and Evans’ ability to

truly achieve a cohesive musical language is extraordinary. At points in this album, it is hard

to parse which player is making a particular sound. Heretic’s Musical Synthesis module

uses Pluta’s Live Modular Software Instrument as a benchmark for range of sonic flexibility

and modular design. Pluta and Evans’ cohesive sonic aesthetic also serves as inspiration for

imbuing Heretic with the ability to transform a human performer’s sound in a subtle, refined,

and vivid manner.

2.3.2 Rosaly

Frank Rosaly is a drummer, composer, electronic musician, and improviser based in Am-

sterdam, Netherlands. His work is self described as "navigating a fine line between the

vibrant improvised music, experimental, rock and jazz communities" [61]. In 2012, Rosaly

released in album entitled Centering and Displacement on Utech records as a part of his

solo project Milkwork, which is described as, "a study in the integration of electronically ma-

nipulated percussion instruments, improvising dense sound walls with controlled feedback,

over-driven amplified drums. Frank blends soundscapes designed through analog electronic

synthesis with extended techniques on unamplified drum set" [61].
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Rosaly’s process in creating this record involved many hours of recording improvised

drum material, editing this material, re-sequencing it electronically, and then recording im-

provised electronics over this recorded drum material. On this album, Rosaly is improvising

with himself. This is similar to my approach to training Heretic to improvise using my own

improvisational methodology as a musical framework. Centering and Displacement’s sonic

aesthetic is a rich combination of unruly noise oriented feedback, and dynamically subtle

melodic and rhythmic material. At points the feedback material is clearly disparate from

Rosaly’s drumming, and at times the drums seem to melt into the surging waywardness of

the feedback. It is also clear that Rosaly is attempting to mimic or mirror the quality of the

drum material while the electronics maintain a separate voice. Centering and Displacement

is sonically divergent from Pluta and Evans’ record in the clear separation of the drums and

electronics in sonic space and musical material. However, there are still moments of clear

aesthetic cohesion, in which the electronics always have a mind of their own, a distinct voice

that is never directly controlled or governed by the drum material [60]. This reflects my aim

of imbuing Heretic with its own sonic voice, while also enabling the software to achieve

aesthetic cohesion with the human performer.

2.3.3 Nakamura/Cascone

Toshimaru Nakamura is a founder of the Onkyokei music movement that began in Japan

during the late 1990s. A scene still active today, Onkyokei music is rooted in free impro-

visation using electronics, "quiet noise," and "exploring the fine-grained textural details

of acoustic and electronic sound" [18]. Nakamura is particularly known for his use of the

no-input mixing board as his primary instrument. He details his use of this instrument:

"Toshimaru Nakamura’s instrument is the no-input mixing board, which describes a

way of using a standard mixing board as an electronic music instrument, producing sound

without any external audio input. The use of the mixing board in this manner is not only

innovative in the sounds it can create but, more importantly, in the approach this method of

23



working with the mixer demands. The unpredictability of the instrument requires an attitude

of obedience and resignation to the system and the sounds it produces, bringing a high level

of indeterminacy and surprise to the music" [47].

Kim Cascone is an experimental American composer, sound designer, and scholar who

is best known as the assistant music editor for David Lynch’s Twin Peaks and Wild At Heart,

and for the ambient and industrial music released on his label, Silent Records. His current

interests are laptop performance, and the use of digital glitches and systemic failure within

his performance practice [11].

Nakamura and Cascone’s collective interest in "indeterminacy" or "failure" within

their respective performance systems is clearly demonstrated on their duo improvisation

record Color Quanta, which was released by Silent Records in 2016 [48]. This is record

characterized by its extreme frequency range, audible digital artifacts, intense glitch material,

and warmly glowing analog noise. It is clear that Nakamura’s and Cascone’s systems are

challenging them to actively navigate "systemic failure" as a means of generating novel and

spontaneous improvised music [11]. Explosive bursts of noise cut to harmonious drones

or sparsely spacious sonic landscapes. Cascone’s harsh digital artifacts waver in and out

as Nakamura’s analog warmth saturates the frequency spectrum. The record sounds as if

Nakamura or Cascone are constantly struggling to work their way around these failures to

produce a formally consistent and sonically rich product. Heretic’s Musical Synthesis module

takes inspiration from Nakamura and Cascone’s aesthetic of "indeterminacy" and "failure,"

by implementing stochastic processes, "mutual subversion", no-input mixer samples, and

aspects of Cascone’s glitch based laptop performance practice [5, 11].

2.4 Looking Forward

The historical, theoretical, and aesthetic concepts detailed in this section are the basis

for Heretic’s computational implementation. In developing Heretic, it was imperative to

24



understand the history of Live Algorithms and how they are developed, the theoretical

principals of free improvisation, and to completely formulate an approach to my own

improvisational methodology.
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3
Implementation

This chapter details how the concepts discussed in Chapter 2 are computationally imple-

mented within Heretic’s Interpretive Listening, Contextual Decision Making, and Musical

Synthesis modules. This chapter also details how these modules work together to create a

cohesive computer music system that produces music that adheres to my intended sonic

aesthetic. The Interpretive Listening module consists of audio feature extraction and ten

triple-layer perceptron neural-networks that are organized according to my interpretation of

Anthony Braxton’s Language Music System (Figure 2.3), enabling Heretic to effectively

organize the sounds of my performance into a high-level organization framework. In a series

of cascading Markov models, the Contextual Decision Making module uses Joe Morris’

26



Postures of Interaction in combination with data from the Interpretive Listening module to

determine which language type Heretic will use in a given musical context. The Contextual

Decision Making also determines how Heretic temporally actuates its sonic response, and

which structural function will be applied to a given sound object [70]. The Musical Syn-

thesis module uses data from the Contextual Decision Making module’s Markov models to

formulate a musical output via live processing, digital synthesis, and sample manipulation.

These three modules are combined through interdependent communication, resulting in

idiosyncratic and novel musical interactions.

3.1 System Overview

Heretic employs a modular design in which each module contains sub-module components

that collectively form a composite module (Figure 3.1). The Interpretive Listening module

contains a feature extraction sub-module in SuperCollider and a language type classifier sub-

module using artificial neural-networks in the machine learning software Wekinator [26, 77].

The Interpretive Listening module also employs sub-modules that smooth the data from

the language type classifiers and track this smoothed language type data to determine the

performer’s incoming language type. This enables Heretic to interpret a human performer’s

real-time playing within the context of my language music system.

The Contextual Decision Making module consists of four cascading 2nd order Markov

chains. The first Markov chain in this series generates Heretic’s internal behavioral state

via Joe Morris’ postures of interaction. This determines how Heretic interacts with the

performer’s incoming language type data from the Interpretive Listening module [44].

Then using this incoming language type from the neural-networks and the decided internal

behavioral state, the Contextual Decision Making module employs three other Markov

models to decide the specific language type Heretic will implement, and which of Smalley’s

onset and termination structural functions will be applied to a particular language type
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Figure 3.1: Heretic’s complete system architecture, displaying all of its intercon-
nected modules and sub-modules.

utterance [70]. Once Heretic formulates its musical output, Heretic synthesizes this output

via a collection of live processing and/or audio synthesis modules. The dashed line in Figure

3.1 symbolizes the bi-directional relationship or emotional transduction between Heretic

and its human partner [37]. In other words, the human performer must consider Heretic’s

output when making musical decisions and vice versa, enabling a common language to

emerge [5].
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3.2 Interpretive Listening Module

Heretic’s Interpretive Listening module functionality consists of three sub-modules: feature

extraction, machine learning via neural-networks, and language type tracking. The feature

extraction module in SuperCollider acts as Heretic’s listening apparatus, parsing amplitude,

timbre, and note onset audio features from a real-time audio signal [13]. These audio

features are then routed to a collection of ten neural-networks in Wekinator via OSC [26].

Collectively, these neural-networks serve as a interpretive function, classifying the audio

features into a language type model. Before Heretic’s intended real-time application, the

neural-network collection is trained on features extracted from audio samples that are

representative of my complete language type collection (Figure 2.3). This offline approach

to training Heretic’s neural-networks encodes the Interpretive Listening module with prior

musical knowledge; enabling Heretic to organize musical materials in to a high-level

structure in real-time (Section 2.2.1). In computational terms, this neural-network training

stage enables Heretic to classify low-level audio features into a definable language type

model during an improvisation. Once the neural-networks are trained on these language type

audio samples, Heretic is ready to interpret what it hears during an improvisation. Audio

features are extracted from a real-time audio signal, and are routed into the neural-networks’

inputs. The neural-networks categorizes audio features from the improviser’s audio signal

into a language type model, and outputs real-time percentages of how closely my playing

fits each language type model. This detected language type produced by the output layer is

then routed to the Contextual Decision Making module for a variety of creative mappings

within SuperCollider.

3.2.1 Feature Extraction

The audio features used to train Heretic’s Interpretive Listening module depend on the

intrinsic sonic characteristics of each language type. Based on my reinterpreted version
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Figure 3.2: Heretic’s neural-network training stage.

of Braxton’s language music system, I have determined windowed note onset density,

inter-onset interval variance, Mel-Frequency Ceptrum Coefficents (MFCCs), windowed

root-mean-square (RMS) data, amplitude envelop tracking, and attack slope data to provide

an accurate analysis of my language types. These audio features are used to train Heretic’s

neural-networks to classify my playing into a language type model. This section provides

justification, and examples of why each particular audio feature is useful in defining my

language type collection.

Windowed Note Onset Density

Time encoded audio features are crucial for accurately describing language types that are

defined by how they move through time. A windowed onset density detector keeps track

of how many onsets occurred in a past window [22]. For example, windowed note onset

density is effective in determining the difference between Silence and Sparse Formings,

because there are moments within Sparse Forming that contain silence. However, if silence

is currently present (no onsets), but onsets are present in the past window, then Heretic can

interpret what its hearing as a Sparse Forming as opposed to Silence. If there were no onsets

in the past window Heretic will interpret my playing as Silence.
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Figure 3.3: Heretic’s feature extraction implementation in SuperCollider.

Inter-Onset Interval Variance

The temporal variance between onsets in an analysis window enables Heretic to determine

whether or not I am playing a steady tempo [65]. The Pulse Forming is defined by rhythmic

regularity and a steady tempo. When the inter-onset interval variance outputs a low number,

the detected onsets are regularly consistent, telling Heretic that a Pulse Forming is my

current language type. If the inter-onset interval variance outputs a high number, then the

intervals between each onset are rapidly changing, therefore my current language type

cannot be a Pulse Forming.
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Mel-Frequency Ceptrum Coefficents

An array of thirteen MFCCs are at the heart of Heretic’s Interpretive Listening module,

highlighting timbre’s important role in my improvisational language types. MFCCs are

particularly apt at classifying unpitched sounds by their timbral profiles [29, 40]. For

example, since Drone Formings and Transgressive Formings are capable of containing the

same dynamic level, onset density, and onset variance, MFCCs are able to differentiate

between the pitched timbre of a Drone Forming and the noisey timbre of a Transgressive

Forming. Another use of the MFCC is to differentiate between the use of soft mallets in

Melodic Formings and the use of drum sticks in Polyrhythmic Formings.

Windowed RMS and Amplitude Envelop Following

output = present− windowsize (3.1)

The windowed RMS feature extracts the RMS from an incoming signal while calculating

this RMS value’s moving average over a window of arbitrary duration [80] (Equation

3.1). The amplitude envelope follower enables Heretic to track sharp changes in dynamic

level [19, 31]. These features accurately measure how a signal’s dynamic level changes

over time in relation to its current dynamic level. For example, MFCCs might easily

confuse Bombastic Formings and Sporadic Formings, because there are moments within

a Sporadic Forming that are timbrally similar to Bombastic Formings. Since Sporadic

Formings often cut to silence, using a windowed RMS follower to track how a signal’s

amplitude changes over time enables the neural-networks to recognize a Sporadic Forming,

instead of a Bombastic Forming followed by brief periods of Silence.

Attack Slope

The attack slope feature enables Heretic to differentiate between the spectral density of a

note’s immediate onset [54]. One example of this feature’s usage is for Heretic to quickly
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classify a Sparse Forming versus a Sporadic Forming. This is because Sporadic Formings

have a denser spectral profile upon its immediate onset than a Sparse Forming. Relying

solely on amplitude following to classify a Sparse Forming versus a Sporadic Forming

would fail, because it is possible a note onset within a Sparse Forming could have a greater

amplitude than an onset within a Sporadic Forming. The attack slope also assists in the

immediate classification of a Sparse Forming, because the windowed onset density feature’s

windowing function adds latency to this classification task.

Classifying Features

The above subsections describe how this combination of audio features work together to en-

able Heretic to listen to my improvisational language, and to interpret these improvisational

utterances into definable language type models in real-time via a neural-network machine

learning method. Once the optimal features for describing my collection of language types

(Figure 2.3) have been selected and implemented in SuperCollider’s feature extraction

functionality, these features are concatenated into a large array (Figure 3.3), and normalized

to avoid undesired weighting within the neural-networks. The array is then down-sampled

to the control rate, and routed into Wekinator’s neural-networks via OSC for training (Figure

3.4).

Figure 3.4: Down-sampled feature extraction data sent to the neural-networks in
Wekinator.

3.2.2 Neural-Networks

Neural-networks have been used for many computational tasks within computer music

research. Sarroff and Casey have used auto-encoded artificial neural-networks in real-time
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audio synthesis systems [64]. Others have used neural-networks specifically for musical

representation and style imitation as seen in Todd, Mozer, and Soukup’s "connectionist

music composition" and Zukowski and Carr’s "Generating Black Metal and Math Rock" [45,

46, 75, 85]. In terms of representing improvisational methodologies, Eck and Schmidhuber

used Long Short Term Memory (LSTM) recurrent neural-networks in their generative

blues improvisation system [23]. Some creators of Live Algorithms use neural-networks to

implement various organizational structures within their Live Algorithms (Section 2.1.1),

such as Bown and Lexer’s implementation of Genetic Algorithms using Continuous-Time

Recurrent neural-networks, and Young’s implementation of Boulez’s chord multiplication

techniques in his prosthesis systems [8, 83].

The abstract and general nature of my language type classifiers makes neural-networks

a good choice for this machine learning task. This is because of neural-networks’ ability to

classify data which has never been presented to the network before, their ability to classify

data in general categories, and their ability to act as non-linear function approximators [58,

68]. For example, one Pulse Forming might exist at a much different tempo and utilize

different timbres than another Pulse Forming, or one Drone Forming might have widely

varying spectral make-up or dynamic contour as compared to another. It is also likely that

I will improvise new variations of each language type in a live performance, and I want

Heretic to properly classify these previously unheard musical spaces. Neural-networks are

also aptly suited to learn the non-linear relationships between the audio features used in

training Heretic and each of my language types.

Testing K-nearest neighbor classification, decision tree classification, linear regression,

polynomial regression, and neural-networks determined the choice to use the latter. When

testing these machine learning methods, each of the ten language type classification models

were trained on ten three-minute pre-recorded audio samples that are representative of each

language type. Next, I improvised using each language type as a musical prompt, and

routed the real-time audio features extracted from these improvisations into each machine
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learning algorithm. Notes were taken of how quickly and accurately each machine learning

method classified the audio into a language type model. After this series of tests, the neural-

networks were able to more accurately classify these previously unseen improvisations into

the language type models than the other machine learning methods.

Neural-Network Architecture

Heretic’s neural-network topology uses ten binary classifiers, discriminatively-trained on

each language type [76]. Each neural-network is a discrete model of each language type.

Using discriminatively-trained binary classifiers is effective for three reasons: they require

fewer training examples, fewer hidden layers, and less processing power to effectively

train the neural-networks to execute this musical task [43, 49, 76]. As an example of how

discriminatively-trained binary classifiers are implemented within Heretic, in training the

collection of neural-networks to detect Melodic Formings, the improviser would set the

"melodic" neural-network’s output layer to "1", and the output layer of every other neural-

network to "0," and then play an example of Melodic Formings into the neural-networks.

Once each neural-network is trained and an improvised audio signal is routed to the neural-

networks for analysis, the neural-networks output real-time percentages of how closely

this previously unseen improvised audio fits each language type model. Using multiple

neural-networks for language type detection as opposed to a single neural-network allows

for multiple language types to be detected simultaneously, becoming in Braxton’s words a

"synthesis" of language types [39, 81].

Neural-Network Hyperparameters

Once the specific neural-network topology was determined, another experiment was per-

formed to find the optimal settings for the neural-networks’ number of hidden layers.

Wekinator’s perceptron neural-networks include a selection of hidden layers between zero

and three [26]. Since my language types describe abstract representations of musical ac-
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tivity, and lack any linear relationship between a given audio feature and a language type,

tests using no hidden layers or one hidden layer demonstrated poor performance in the

general classification of previously untrained data. This is also because single hidden layer

neural-networks require significantly larger amounts of training data to solve nonlinear

relationships, thus becoming more computationally expensive [58, 68]. Two hidden layers

were more accurate at classifying language types, based on my ground truth labels, however

three hidden layers showed the most accuracy in classifying my improvisations into the

language type models.

Further neural-network hyperparameter tests focused on the number of nodes per hidden

layer in order to further optimize the neural-network’s performance. Using common neural-

network heuristics for estimating the number of nodes per hidden layer as a starting point, I

began by using the number of input nodes as the number of nodes per hidden layer, which

was seventeen [58, 71]. This setting over-fit the training data, as I had to play extremely

similar material to the training audio in order for the neural-network to accurately classify

the language types. I continued this empirical process by subtracting one node per hidden

layer until the neural-network exhibited the desired behavior. The optimal number of nodes

per hidden layer is thirteen nodes.

Neural-Network Training and Output

After optimizing Heretic’s feature extraction and neural-network functionality, the neural-

network collection was trained on a large set of audio feature data corresponding to each

language type model. This provided Heretic with the ability to accurately hear and con-

textualize unforeseen musical materials. As I discover new improvisational material in my

personal practice sessions, I train the language type models on these new sonic materials as

they fit within my language type collections. This provides the neural-networks with the flex-

ibility to classify my future improvisational utterances. Once this extensive neural-network

training stage is complete, the neural-networks are able to take the extracted features from a
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real-time improvisation into their input layer and output a continuously updating array of

ten language type propability signals. Each signal is a real-time percentage of how much my

playing fits each language type model. This array is then routed to the Interpretive Listening

module’s signal smoothing and language type tracking sub-modules for the purpose of

detecting my incoming language type.

Figure 3.5: Language Type tracking in SuperCollider with data smoothing.

3.2.3 Signal Smoothing and language type Tracking

Before routing the neural-network signals to the Contextual Decision Making module, the

Interpretive Listening module implements signal smoothing and language type tracking

sub-modules to detect my incoming language type from the array of neural-network data

(Figure 3.5). The signal smoothing sub-module uses decimal point rounding and a one

second lag to smooth the neural-network’s output. This ten-channel array of continuous,

smoothed data is then sent to the language type tracking sub-module in SuperCollider. This

sub-module uses SuperCollider’s "ArrayMax" unit generator to detect the largest value in an

array of data, thus returning the neural-network’s decided language type [77]. This detected

language type from the language type tracking sub-module is then routed to Heretic’s

Contextual Decision Making module.
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3.3 Contextual Decision Making Module

The Contextual Decision Making module receives the neural-network data in SuperCollider

from Wekinator via OSC, and uses this data to make a decision based on the real-time

context of the improvisation. This module contains four sub-modules, each consisting of a

Markov model designed to complete the following tasks:

• decide Heretic’s internal behavioral state via Joe Morris’s postures of interaction

• decide which language type Heretic will use to interact with the human’s playing

• decide which of Smalley’s structural functions will be applied to a given language

type utterance

This section gives a brief background on Markov models as a tool within music compo-

sition, an overview of why I have chosen to use Markov models, and detailed descriptions

of how I have designed each Markov model to fit my aesthetic goals for Heretic’s musical

decision making process.

3.3.1 Markov chains: An Overview

The use of Markov models in music composition dates back to Hiller and Issacson’s 1956

work Suite III for String Quartet [30]. In 1959, Xenakis used Markov models in his

compositions Analogique A for string orchestra, Analogique B for sinusoidal sounds, and

Syrmos for 18 strings [82]. Xenakis used many simultaneous Markov chains to generate

these compositions [3]. Each Markov chain generates a different musical parameter such

as frequency, amplitude, density, or length. Specific combinations of these parameters

constitutes a "screen," and parametrically moving between "screens" defines the formal

structure of a piece. Thus, Xenakis is crafting a work’s low-level material via the Markov

models, and is then generating the work’s formal structure from these stochatically generated

low-level materials. Since Xenakis, many other composers have used Markov chains for
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various tasks in music composition, such as David Cope’s melodic sequence modelling in

his Alice system, and Charles Dodge’s melodic and rhythmic modelling of Stephen Foster

songs [17, 21].

More recent implementations of Markov chains in the domain of computer music have

involved the use of improvisation. For example, David Zicarelli’s Jam Factory system

enables performers to change the weights of Markov chains in real-time to generate novel

pitch sequences [84]. Sertan Senturk’s machine learning system uses a database of 77

Turkish Folks songs to train Variable-Length Markov models to generate improvised pitch

sequences based on the Turkish Folk Song Style [67]. Christopher Dobrian’s improvisation

software implements a version of Xenakis’ "screens" by enabling the real-time saving of

a screen’s parametric state, and enabling interpolation between these states [20]. Assayag

and Dubnov use statistically trained Variable-Length Hidden Markov models to implement

factor oracles within Omax [4].

3.3.2 Markov Chains: Heretic

The choice to use Markov chains in Heretic’s Contextual Decision Making module stems

from Derek Bailey’s concept of mutual subversion [5]. Mutual subversion is when a common

musical language between two or more improvisers is so collectively well-known, that the

musicians are able to unpredictably test the confines of this language by challenging the

musical decisions of other players. While Heretic can hear my language and interpret

its contextual meaning in real-time, a Markov chain’s stochastic properties allow Heretic

to artfully subvert the human’s playing while also testing the limits of the machine and

human’s shared musical language. In other words, a Markov chain’s probabilistic weights

might suggest to the human performer what decision to expect from Heretic. However, the

stochastic properties of a Markov chain can easily subvert these expectations, leading to the

human performer constantly being faced with how to navigate through these confirmed or

subverted expectations.
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MorrisMarkov

The first Markov chain in this cascading series, MorrisMarkov, is a second-order Markov

chain that decides which posture of interaction Heretic will implement within a musical

situation. In addition to Morris’ posture of interaction, I have included a Recall posture of

interaction within this Markov chain. The Recall posture retrieves and actuates a synthesis

module that Heretic used earlier in the performance. This functionality enables reoccurring

sonic motifs to take shape, an improvisational technique that is part of my approach to

creating cohesive formal structures during an improvisation.

Before a performance, Heretic’s user sets the probabilistic weights for each posture of

interaction, thus generating a type of mood or disposition regarding how Heretic behaves

during the improvisation. For example, if the Unison posture of interaction weight is set

high while the others are set to zero, Heretic will simply follow the human performer’s

sonic choices throughout the performance. A contrasting example, if the Solo posture

of interaction weight is set high while the others are set to zero, Heretic bypasses the

Interpretive Listening module, thus completely ignoring the human’s musical input.

With the resultant musical output as the motivating force, MorrisMarkov’s weighting

paradigm contains two constraints. First, since MorrisMarkov is a second-order Markov

chain, it uses the current and past postures of interaction to decide the next posture of

interaction. If the same posture has been chosen twice in a row, a hard-coded weight of zero

restricts that posture from repeating a third time (Figure 3.6). The second constraint is that

the Recall posture cannot be called until two postures have been previously chosen in the

performance. This is because not enough music has taken place for it to make sense for

Heretic to recall a previously used musical state.

BraxtonChoose

The BraxtonChoose Markov model uses the decided posture of interaction from Morris-

Markov and the human performer’s incoming language type from the Interpretive Listening
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Figure 3.6: The BraxtonChoose Markov model with if statement constraints imple-
mented as a class in SuperCollider.

module to decide which language type Heretic will use as its musical output. These cho-

sen language types manifest themselves as synth instances in Heretic’s Musical Synthesis

module (Section 3.4). BraxtonChoose is implemented as a class that uses if statement

constraints to decide which synthesis bank in the Musical Synthesis module to activate. As

seen in Figure 3.6, if Heretic’s "current posture" is Silence, then Heretic’s BraxtonChoose

class returns the symbol "0," the Silence synthesis bank is activated, terminating all current

synthesis tasks (henceforth, refer to Table 3.1 for the symbol representation of Heretic’s

synthesis banks within SuperCollider).

Regarding the Unison posture of interaction, I have interpreted this posture to act as

a fusion of my sound with Heretic’s sound. Therefore, the Unison synthesis banks are

separate from the other banks, because they only contain live processing modules that act as

an extension of my drum sound rather than as a separate musical voice. There are ten Unison
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synthesis banks, each specifically designed for each language type. When MorrisMarkov

returns a Solo or Recall posture, the "if" statements constraints in BraxtonChoose will simply

activate an algorithmic generated Solo passage or Recall a previously synth synth instance.

Symbol language type
0 Silence
1 Sparse Formings
2 Drone Formings
3 Granular Formings
4 Melodic Formings
5 Pulse Formings
6 Polyrhythmic Formings
7 Sporadic Formings
8 Transgressive Formings
9 Bombastic Formings
10 Solo Posture
11 Recall Previous Synth
12 Unison Posture

Table 3.1: Symbol representation of Heretic’s language type synthesis banks in
SuperCollider.

Figure 3.7: Heretic using the incoming language type from the Interpretive Listening
module to choose a synthesizer from a Unison synthesis bank. Whenever a synthe-
sizer is called, it is added to recall_synth_array, enabling Heretic to potentially recall
this synthesizer later in the improvisation.

The Complement and Juxtaposition postures use the human performer’s incoming

language type to determine how it will complement or juxtapose this language type. The

probabilistic weights are set based on my aesthetic reasoning behind which language

types complement or juxtapose one another. For example, I have distributed weights for

a Complement posture with an incoming language type of Pulse Formings in the order of

most likely to be chosen to less likely to be chosen: Pulse Formings, Polyrhythmic Formings,

Melodic Formings, Granular Formings, Sporadic Formings, and Transgressive Formings

(Figure 3.6). In contrast, the distributed weights for Juxtaposition posture with an incoming
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language type of Pulse Formings are equal across the following language type banks, Sparse

Formings, Drone Formings, Sporadic Formings, Transgressive Formings, and Bombastic

Formings (Figure 3.6), with all of the other language type weights set to zero. This weighting

process is repeated for all of the other language types with aesthetic consideration in mind.

During a complement posture, if BraxtonChoose returns the same language type as the

human performer’s incoming language type, this is not considered a Unison posture, because

these synthsizers act as separate musical voices as opposed to the Unison live processing

modules (Section 3.4).

Temporal Actuation

Heretic must now decide when and how to implement these synth instances. Once a perfor-

mance begins, a random synth instance is actuated. From this point forward, each new synth

instance is actuated once the previous synth instance is terminated, with temporal variances

applied via the use delays to avoid unwanted temporal regularity. A synth instance’s tempo-

ral actuation and termination changes depending on Heretic’s current posture of interaction.

For example, if Heretic’s current posture of interaction is Unison or Complement, the synth

instance is actuated and terminated in close proximity to when the human performer changes

language types (Figure 3.8). A synth associated with a Complement posture has the added

probability of a slight delay in its onset or termination, because a complementary interaction

does not suggest as tight of a one-to-one temporal mapping as a Unison interaction. During

Solo or Juxtaposition postures, Heretic autonomously chooses how long a synth instance will

last and the precise actuation and termination of the said synth instance. The combination

of tight temporal mapping with a the human performer and Heretic’s flexible temporal

actuation enables a varied and nuanced temporal structure to emerge.

Before the improvisation begins, the human performer selects the length of the improvi-

sation and enters this time into Heretic’s graphical user interface. When the performance

begins, Heretic actuates a clock that tracks the improvisation’s length. Once the clock
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reaches the predetermined end time, depending on which posture of interaction Heretic

is currently in, Heretic proceeds to decide how to end the improvisation with the human

performer. If Heretic is in a Unison or Complement posture of interaction, it will end its

output as soon the human performer goes silent. If Heretic is in a Solo or Juxtaposition

posture of interaction, it will end its output once its current synth routine ends, which could

be a minute or two after the previously set ending time.

Figure 3.8: Unison synthesis temporal actuation routine.

Figure 3.9: Juxtaposition synthesis temporal actuation routine.

SmalleyMarkovOnset and SmalleyMarkovTerminate

Once the BraxtonChoose Markov model decides which language type Heretic will activate

in its musical response and when, the SmalleyMarkovOnset and SmalleyMarkovTermi-

nate Markov chains decide which of Denis Smalley’s "onset" and "termination" structural

functions will be applied to a given sound object [70]. In a literal sense, the "onset" and

"termination" structural functions act as the attack envelop and release envelop segments of
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Heretic’s chosen synthesised language type output [70] (Figure 2.1). The envelope device

used to generate each structural function is SuperCollider’s "dadsr," a standard adsr envelope

with an added delay argument (Figure 3.10). Each envelope’s segments are chosen from

arrays generated during Heretic’s initialization phase. These arrays are designed according

to my interpretation of Smalley’s structural functions while avoiding any overt regularity or

predictability in the shape and timing of the envelopes. This is done in order to induce an

affect of mutual subversion between Heretic and the human performer.

I have hand-selected the following "onset" structural functions from Smalley’s list:

attack, emergence, anacrusis, and upbeat (Figure 2.1). I have also added a delay option to

the choice of possible onsets. The delay onset simply delays the attack segment of one of

the other onset functions by an arbitrary number of seconds. Considering each new synth

instance is actuated as soon as the previous one is terminated, this delay onset allows for a

sort of musical breath between synth instance actuations. The probabilistic weights of each

onset function are determined by which onsets make the most musical sense in regard to

each specific language type. For example, if Heretic chooses a Drone Forming, it is most

likely that SmalleyMarkovOnset will apply an emergence onset function, considering the

slow temporal nature of a Drone Forming. If a "delay" onset function were chosen, a delay

time would be chosen from an array of possible delay times, and SmalleyMarkovOnset

would activate its Markov chain again with the constraint of not having the "delay" function

as an option. Another example is if Heretic chooses a Sporadic Forming, only an "attack"

onset function will be used to enhance this language type’s initial burst of onset energy, and

a "closure" termination function accentuates this language type’s quick and disjunct sonic

character.

Like SmalleyMarkovOnset, I have hand-selected a specific group of his "terminations"

and one borrowed from Smalley’s list of "continuants." The terminations used in this Markov

chain are arrival, disappearance, release, closure, and from the continuants list, prolonga-

tion. The prolongation acts analogously to the delay onset function from SmalleyMarkovOn-
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set. When Heretic calls for a synth instance to be terminated, if SmalleyMarkovTerminate

chooses prolongation, SmalleyMarkovTerminate is accessed again without the option of

prolongation and simply adds a delay to when the termination function will be applied to

the synth instance. This prolongation function enables multiple synth instances to overlap,

adding to the potential sonic complexity and intended macro-temporal irregularity of a given

musical event. SmalleyMarkovTerminate’s probabilistic weighting functions in a similar

manner to SmalleyMarkovOnset, with each weight determined by mapping specific termina-

tion probabilities to a language type’s sonic nature. For example, SmalleyMarkovTerminate

is most likely to choose a disappearance termination because it enhances a Drone Forming’s

slow-moving nature.

Figure 3.10: Heretic’s envelope functionality using SuperColliders "dadsr" (delay-
attack-decay-sustain-release) envelop generator. This is an example of a delayed
emergence onset with a disappearance termination.

Figure 3.11: An example of a structural function with a delay, onset, and termination
segment.

Regarding Smalley’s Continuants

The "continuant" segment of each synth instance is determined by the intrinsic sonic nature

of the synth as opposed to an externally prescribed enveloping function. For example, if a

46



synth uses low-level audio feature data from the human performer as a control signal, the

quality of the synth’s continuation will be determined by whatever the human performer

plays. This particular example could be interpreted as a passage continuant. Another

example is if Heretic applies a disappearance termination to a Drone Forming, while

simultaneously actuating a Granular Forming with an emergence onset, this could be

perceived as a transition continuation between these two musical states.

3.3.3 Decisions Manifested as Music

The decision making processes described in this section determine, how Heretic will interact

with a human performer, what language type it will implement within this interaction,

when it will actuate this language type, and where in the structural framework of the

improvisation it will implement a particular synth instance. Once all of these decisions have

been made, Heretic uses its sonic voice to express these decisions. The following section

details Heretic’s low-level audio synthesis framework and the particular aesthetic intentions

embedded in this framework.

3.4 Musical Synthesis Module

Heretic’s Musical Synthesis module is a collection of functionalities that express Heretic’s

musical decision making process as music. Henceforth, I will refer to these sonic func-

tionalities as individual synth instances. Heretic’s synth instances are implemented using a

combination of SuperCollider’s SynthDef and Pattern functionalities [78]. A synth instance

incorporates the the macro-level decisions made by the BraxtonChoose Markov model, and

the strucual functions decided by the SmalleyMarkovOnset and SmalleyMarkovTerminate

Markov models. The micro-level decisions for each synth instance are determined by a

synth’s sonic parameters, which are generated algorithmically or via low-level audio fea-

tures extracted from the human’s playing. Each synth instance is classified into Heretic’s
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own version of Braxton’s Language Music, enabling a "common language" and "musical

coherence" between Heretic and myself to emerge [5, 62]. This combination of macro and

micro level organization within Heretic’s Musical Synthesis module forms Heretic’s own

"sound," or unique musical voice to take shape [5, 44].

3.4.1 Organization and Synth Instance Selection

Figure 3.12: This code demonstrates adding a Melodic Forming synth instance to
the Melodic Forming language type synth dictionary. Here, the sound sources are
generated algorithmically via SuperCollider’s Pattern functionality. The audio output
of these Patterns are routed through an envelope which applies a structural function
to the audio output of said Pattern instance.

Heretic’s musical language is organized via my reinterpreted version of Braxton’s

Language Types [9,39] (Figure 2.3). Each of Heretic’s language types act as a organizational

group that houses a variety of synth instances that fit the sonic properties of each language

type. In SuperCollider, a dictionary contains individual synth instances that are grouped

according to their specific language type characteristics. When the BraxtonChoose Markov

model returns Heretic’s decided language type, Heretic freely chooses a synth instance

at random from the synth bank dictionary that corresponds to the returned language type.

While Heretic is maintaining "musical coherence" by intelligently choosing a language type

at a macro-level via its Interpretive Listening module, it also maintains "mutual subversion"

by randomly deciding the specific synth instance it will implement at a given moment [5,62].
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3.4.2 SynthDefs and Patterns

Heretic’s Musical Synthesis module uses two of SuperCollider’s audio synthesis functionali-

ties, SynthDefs and Patterns [77]. In my experience, SynthDefs and Patterns are useful for

different musical tasks. SynthDefs are useful for processing acoustic sounds in real-time,

and mapping low-level audio features to synthesized sound. Patterns excel in creating

algorithmically generated sequences of music, sampling pre-recorded sound, and generating

streams of data to control SynthDefs. Using SuperCollider’s flexible audio and data routing

functionalities, I have developed a method for using SynthDefs and Patterns in unification

with each other.

SynthDefs

SynthDefs are a flexible and efficient way of generating, manipulating, and processing audio

in Supercollider. As stated in the Supercollider Documentation:

"Once the server has a synth definition, it can very efficiently use it to make a number

of synths based on it. Synths on the server are basically just things that make or process

sound, or produce control signals to drive other synths" [42].

As previously detailed, the Unison synth dictionaries only apply live processing effects to

the acoustic signal coming from the human performer. Figure 3.13 is a SynthDef that uses

an audio effect developed by Nick Collins entitled "NTube.ar" [15]. NTube.ar processes real-

time audio using a a physical model of a tube with N tube sections, N-1 scattering junctions

in between each tube section, and a variable array of delay lines [15]. My implementation

of this effect in a SynthDef uses real-time RMS data from the Interpretive Listening module

and maps this data onto various synthesis parameters (Section 3.2.1) (Figure 3.13). Mapping

this RMS data to such a large number of parameters results in a chaotic sound, making

this SynthDef a Unison Bombastic Forming. By transforming and extending the drum-set’s
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sonic properties using RMS tracking, Heretic’s output and the human performer’s output

morph into one electronic/acoustic hybrid, a true sonic Unison.

Figure 3.13: The Ntube SynthDef that extends and morphs the the real-time drum-
set sound by mapping RMS data to various synthesis parameters. The RMS data in
this SynthDef is represented by the variable "amp_in."

SynthDefs can also generate sound via the low-level audio features extracted from the

human performer’s playing. An example of this is the "concat_delay" SynthDef. This

SynthDef can be categorized in many different language type synth banks, due to its ability

to mirror the human performer’s playing in real-time, and its ability to access a wide variety

of audio corpuses. "Concat_delay" uses zero crossing rate, log mean square amplitude,

spectral centroid, and spectral tilt features to retrieve and concatenate audio samples from

any stored audio corpus that matches the real-time features extracted from the acoustic

signal [12,66]. Therefore, when its output is routed through a delay line, Heretic mirrors the

phrasing and gesture of the incoming audio at irregular times while avoiding a tight one to

one mapping.
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Patterns

Heretic uses Patterns to create algorithmically generated sequence of music. While Patterns

do not literally generate sound themselves, they enable high-level control of many musical

parameters within a SynthDef. James Harkins supplies a eloquent explanation of Pattern’s

functionality in his online article A Practical Guide to Patterns:

"The SuperCollider Pattern library... is a higher-level representation of a computational

task... when they are appropriate, they free the user from worrying about every detail of

the process. Using patterns, one writes what is supposed to happen, rather than how to

accomplish it. In SuperCollider, patterns are best for tasks that need to produce sequences,

or streams of information" [28].

In my particular implementation of Patterns within Heretic, the sonic output of a Pattern

is routed through a SynthDef that applies the structural functions determined by Smalley-

MarkovOnset and SmalleyMarkovTerminate to the composite amplitude envelope of the

Pattern’s output. This is done in order for the same structural functions to be consistently

applied to both SynthDefs and Patterns.

Figure 3.14 shows an example of a Pattern in the Melodic Formings synth bank array.

This pattern strings together a collection of small melodic motifs that were prerecorded

using analog synthesizers. This Pattern accesses these samples through a simple SynthDef

designed to playback and manipulate audio. The resulting sound consists of multiple

meandering melodies that are generated autonomously via stochastic processes.

The example in Figure 3.15 uses stochastic processes to generate "clouds" of various

synthesized drum sounds followed by a variable amount of silence before actuating another

"cloud" of drum sounds [82]. This Sporadic Forming adheres to Bailey’s concept of "mutual

subversion" because the amount of silence between each cloud constantly changes, keeping

the human performer guessing when Heretic might actuate another cloud of drum sounds.
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Figure 3.14: An example of a Melodic Forming Pattern.

3.4.3 Sonic Aesthetics: Creating a "Sound"

At the core of Heretic’s musical language are the literal sounds it produces. In his book,

The Proprieties of Free Music, Joe Morris discusses the importance of sonic identity and

originality when performing freely improvised music:

"Originality (invention) is manifested in a sound, which is quickly associated with the

performer or group of performers who make it... the goal is always an identifiable sound

that contains the artist’s audible and inaudible creative, expressive DNA" [44].

Just like a human improviser, it is important for the creators of machine improvisers

and Live Algorithms to imbue their systems with a "sound," or an "expressive DNA" [44].

Considering Heretic is using my improvisational methodology as a basis for enabling its own

musical voice to take shape, Heretic’s sonic voice is a synthesis of various sonic properties

from musical idioms and specific improvisers that have inspired my own musical practice as

a composer and improviser (Section 2.3). As discussed in section 3.4.2, Heretic uses live
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Figure 3.15: A Sporadic Forming Pattern that generates stochastic "clouds" of syn-
thesized drum sounds [82].

processing effects, digital synthesis, and sample manipulation as means of expressing its

musical voice. Here, I will provide examples of each of these sonic functionalities, how they

represent my aesthetic tastes, and how they relate to the inspirational musics discussed in

Section 2.3.

Live Processing Effects

Live processing effects extend, augment, and manipulate the real-time sound of acoustic

instruments [1]. While many Live Algorithms output a singular musical voice [33,35,37,50,

51], the opportunity to alter acoustic instruments with the real-time processing capabilities

of a computer is an expressive musical tool to add to a Live Algorithm’s sonic palette.

The duo project of Sam Pluta and Peter Evans is an excellent example of acous-

tic/electronic fusion via live processing. In particular, I have taken inspiration from Pluta’s
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effectiveness in electronically processing, and subsequently fusing with Evans’ acoustic

trumpet sound. There are many examples of sonic funsion in the track "Dark Matter" from

Pluta/Evan’s record Event Horizon, which was released by Pluta’s record label, Carrier

Records in 2014 [56].

One example is at the beginning of the improvisation with Evans playing a phrase

of complex, bass heavy growls. At 00:14, Evans begins to add dynamic accents while

maintaining the drone-like growls, the timbral quality of the growls slightly shifting with

each accent. Evans continues this material until approximately 00:40 as Pluta emerges from

Evans’ texture. At first, Pluta’s entrance appears to be another shift in Evans’ pitch, but

00:48 clarifies that Pluta is "freezing," and pitch shifting the spectral quality of Evans’ sound.

An accent similar to Evans’ accents peeks out of the texture whenever Pluta shifts the freeze

effect, a digital extension of Evans’ trumpet. Another example of Pluta’s live processing

abilities being used to sonically fuse with Evan’s acoustic sound occurs around 02:18 as

Pluta applies a rapid delay to Evans’ real-time signal. As this delay fades in, Evans mirrors

the delay’s elongated phrase length and pitched-up quality. This is an archetypal example of

Evans reproducing electronic sounds, a crucial element to the duo’s fused language.

Heretic’s Musical Synthesis module implements various SynthDefs that approach live

processing effects in a similar manner to these musical examples from "Dark Matter" [56].

One example is the "NTube.ar" SynthDef discussed in section 3.4.2 (Figure 3.13), which

extends an acoustic sound source using the physical modeling of filtered delay lines. I

have also implemented at spectral shift freeze delay effect similar to the one used by

Pluta at approximately 00:40 in the recording of "Dark Matter." When actuated during

a Transgressive Forming, this effect extends the "noise oriented" quality of an acoustic

sound source by wildly shifting the spectral quality and pitch of a frozen spectral profile in

real-time. This is especially effective when the acoustic sound source is bowed styrofoam,

megaphone feedback, or bowed cymbals. Another example is a "SwitchDelay" effect that

behaves in a similar manner to the delay effect Pluta applies to Evans’ trumpet sound at
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02:18 in the aforementioned recording [57]. This "SwitchDelay" effect can enhance a Pulse

Forming when its delay time is fixed, or it can augment a Polyrhythmic Forming when

multiple delay lines are used. These are just a few examples of many live processing effects

Heretic may implement as tools for sonic fusion during an improvisation.

Digital Synthesis

Heretic accesses SuperCollider’s wide range of digital synthesis functionalities to express

its sonic voice’s computer-like qualities. For example, Heretic implements standard additive

synthesis techniques to create complex Drone Formings, while always applying some form

of analog modelling to the drone’s signal to maintain a sonic character consistent with the

analog synthesizer and no-input mixer samples used in its sample manipulation functionality.

SuperCollider contains various Moog filter emulators that assist in adding this analog

character to digital oscillators [27, 72]. This desire to achieve a synthesis sound with an

analog character is inspired by the use of analog drones in Frank Rosaly’s Centering and

Displacement [60,61]. This album’s B-side begins with a thick, saturated, low-frequency

focused drone that lasts until 05:28. The drone is static enough to allow Rosaly’s solo to take

the forefront, yet the drone also contains inner movements that adds a subtle counter-point

to Rosaly’s playing. In Heretic’s Drone Formings, the static nature of the drone is achieved

via the digital oscillators, and the subtle manipulations of the drone comes from the Moog

filter emulators.

An example of digital synthesis in a melodic context can be found in Pluta/Evan’s "Dark

Matter" [56]. Pluta begins the section at 06:55 by occasionally modulating the fundamental

carrier frequency of his wobbly sine-tone up an 11th from a D5 to a G6. When Evans

enters, he engages in a unison posture by playing rhythmic patterns on the notes G#4 and

D#6. Both Pluta and Evans’ note selections are compound intervals that are 4ths and 5ths

when reduced to an octave. One method for creating Melodic Formings within Heretic

are through Patterns that use Markov chains to generate a stream of pitches from a pitch
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class. The attack, decay, sustain, and release of each note generated by the Pattern can also

be generated using Markov chains. When using Transgressive Formings, Heretic outputs

extreme sonic utterances, such as high pitched sine tones. Inspiration for using piercing

sine tones as a Transgressive Forming comes from the track "Spectral Light" in Nakamura

and Cascone’s album Color Quanta, in which the entire track is based on a 14,847hz sine

tone. While Nakamura and Cascone’s use of extreme frequencies in this track lacks sonic

energy stemming from rhythmic density or loudness, this simple gesture of a soft 14,847hz

sine-tone creates a substantial amount of musical tension.

Sample Manipulation

The samples used within Heretic vary from field recordings, acoustic instrument recordings,

found object recordings, analog synthesizer recordings, no-input mixer recordings, and

recordings of my previous compositions. I am continuously adding samples to this collection

with the intention that Heretic’s sonic palette is always evolving. These samples are not

simply triggered by Heretic as that would compromise Heretic’s musical autonomy. Instead,

Heretic implements various Patterns that can access any sample, sequence these samples

together into a novel musical gesture, and autonomously manipulate the samples via re-

sampling, pitch-shifting, reversing, and sending the output of the sampler to a variety of live

processing effects.

I have chosen to include analog synthesizer and no-input mixer recordings to Heretic’s

sample collection to reinforce the analog character of sound as discussed in the previous

subsection. Also, the sonic quality of the no-input mixer is integral to my "sound" as a

composer, as I am heavily influenced by the sonic aesthetic from Toshimaru Nakamura’s

no-input mixer improvisations, and have used sounds from the no-input mixer in many of my

recent works [47]. The no-input mixer samples used in Heretic are from various recordings

taken from my performances on the no-input mixer. This is similar to Frank Rosaly’s

approach to creating Centering and Displacement where her edited together his electronic
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and percussion improvisations into a complete piece of music (Section 2.3.2). However, the

difference in this context is that Heretic is autonomously re-contextualizing these recorded

improvisations by using them as improvisational materials via splicing, rearranging, and

manipulation.

Heretic also uses recordings of my complete compositions as sampling material. This is

inspired by Anthony Braxton’s work Echo Echo Mirror House, in which a computer program

designed by Carl Testa can play any recording from Braxton’s complete discography [74].

Another way Heretic implements sonic re-contextualization is by recording its own output to

a wav file and storing it on the computer’s hard-disk for later use in its sampling functionality.

This method enables Heretic to always have novel sonic materials to actuate in a performance

while autonomously generating its own sonic materials.

3.4.4 A Novel Musical Voice

This section details the inner workings of Heretic’s Musical Synthesis module and its

resultant sonic aesthetic and unique musical voice. This unique musical voice results from

Heretic’s ability to interpretively listen to a human performer, make a musical decision based

on what it hears, and implement this musical decision while maintaining "an identifiable

sound that contains [its own] audible and inaudible creative, expressive DNA" [44]. The Live

Algorithms detailed in 2.1 have their own unique voices, but these voices are restricted to a

limited sonic palette. Heretic’s "identifiable sound" differs from these other Live Algorithms

by assuming the vast sonic palate of a flexible laptop improviser [55]. Heretic achieves

this through the novel use of live processing effects, analog modelled digital synthesis, and

sampling techniques that use a highly nuanced and eclectic collection of samples.
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3.5 Towards a Musical Evaluation

This chapter describes the computational implementation of Heretic’s Interpretive Listening,

Contextual Decision Making, and Musical Synthesis modules and how these modules interact

to create Heretic’s novel musical output. It also details how Heretic’s implementation adheres

to my musical goals, aesthetic intentions, and improvisational methodology as detailed in

Chapter 2. The following chapter provides a formal analysis of music created with Heretic as

an attempt to evaluate its autonomy and creativity as an improviser. Following the Analysis

and Evaluation chapter, I draw conclusions from Heretic’s development, and provide ideas

for future work that may stem from this research.
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4
Analysis and Evaluation

This section provides a formal analysis of a recording made with myself and Heretic. This

analysis also uses the recorded output from the language type classifiers to demonstrate

Heretic’s ability to accurately classify my real-time playing into a language type model, and

how it makes musical decisions based on this data. The recording can be found at this URL:

https://soundcloud.com/hunter-brown-music/heretic-full-1. In this analysis, I segment the

formal structure of the improvisation, and identify specific musical moments that demon-

strate Heretic’s ability to achieve "autonomy, novelty, participation and leadership" [6]. This

analysis also examines the aesthetic characteristics of Heretic’s musical output and whether

or not these characteristics fit my musical intentions. The purpose of this analysis is to
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evaluate Heretic objectively and subjectively. Evaluating Heretic objectively is inherently

problematic, considering the motivation behind Heretic was to create an autonomous sys-

tem that uses my own improvisational methodology as a computational and conceptual

framework for machine improvisation (Section 1). Rather, I attempt to evaluate Heretic’s

interactions with a human performer and its resultant musical output via Blackwell et al.’s

defining qualities of a Live Algorithm: "autonomy, novelty, participation and leadership,"

while also evaluating whether Heretic maintains my motivations behind its creation.

While there have been attempts to objectively evaluate algorithmic composition systems,

I find it impossible to objectively quantify the aesthetic value of a Live Algorithm’s musical

performance [25, 32, 52, 53]. Pearce and Wiggins’ paper Towards A Framework for the

Evaluation of Machine Compositions, and Eigenfeldt et al’s paper Evaluating Musical

Metacreation in a Live Performance Context test whether an audience could tell the differ-

ence between a composition made by an algorithm or a by human composer [25, 52]. To

qualify their study, Pearce and Wiggins state, "the means of evaluating the compositions

generated by a machine will depend on the aims of the designer" [52]. Eigenfeldt et al. also

acknowledge the role of the creator’s approval by stating the importance that "the designer

of the system accepts the output as artistically valid" [25]. As stated in Chapters 1 and 2

of this thesis, my aim is not to emulate music made by a human, but rather for Heretic to

maintain its intrinsic computer-like qualities and to use my improvisational methodology as

a means of generating its own unique musical voice that I find to be "artistically valid" [25].

Therefore, measuring Heretic’s musical output against human-made music does not align

with my musical goals. However, considering my aim is to develop a Live Algorithm that

maintains autonomy through its interactions with a human performer, it is valid to evaluate

Heretic’s musical output using Blackwell et al.’s defining qualities of a Live Algorithm:

"autonomy, novelty, participation and leadership" [6]. By using these qualities as evaluative

benchmarks, I am able to objectively determine whether or not Heretic can be labelled as a

Live Algorithm. Once confirming Heretic’s status as a Live Algorithm, I can then evaluate
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Heretic’s musical output with aesthetic consideration, confirming my subjective musical

intentions.

4.1 Formal Segmentation and Analysis

Before evaluating Heretic’s autonomy, novelty, participation and leadership, it is neces-

sary to identify this improvisation’s formal sections, how Heretic’s Interpretive Listening

module influenced its decision making, how mine and Heretic’s interactions generate these

sections, and how we navigate through these sections. A labelled visual representation and

spectrogram of this improvisation’s formal structure is shown in Figure 4.1. The list below

describes each labelled formal section, and how the formal structure progresses through the

improvisation.

• 1: I begin this improvisation by engaging in a Drone Forming by applying a transducer

to a tom-tom, resulting in a sustained texture. Heretic interacts with this Drone

Forming via a Complement posture of interaction by engaging in a Melodic Forming.

• 2: In this transitional moment, I move from a Drone Forming to a Melodic Forming,

mirroring Heretic’s output from section 1. Once I enter this Melodic Forming, Heretic

recognizes this as a solo posture by fading its output to silence.

• 3: At the end of my melodic solo in section 2, I began a Granular Forming by rustling

wooden shells. Heretic breaks its Silence posture by actuating a granular synthesizer,

a Complement posture of interaction.

• 4: I slowly move from the rustling wooden shells to bowed cymbals, a Drone Forming.

Heretic maintains its previous Granular Forming as I change language types.

• 5: After establishing my bowed cymbal Drone Forming, Heretic also engages in a

Drone Forming while maintaining its previous Granular Forming for a few more
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seconds. This collective Drone Forming is short lived as Heretic suddenly engages in

a Juxtaposition posture of interaction in section 6. Heretic’s Drone Forming in this

section is recalled in section 11.

• 6: While I am still engaging in a Drone Forming, Heretic engages in Juxtaposition

posture in this section by implementing a variably delayed concatenative synthesizer

that uses a corpus of synthesized drum sounds. Considering the short and sharp nature

of these drum sounds, this Juxtaposition is stark against the previously established

Drone Formings. Once Heretic actuates this concatenative synthesizer, I suddenly

morph this interaction from a Juxtaposition to a Unison by abandoning my Drone

Forming to engage in a Sparse Forming.

• 7: This Complementary Sparse Forming continues, and as Heretic and I build in

density, I move towards a Pulse Forming. Upon hearing this Pulse Forming, Heretic

applies a delay effect to by drum sound. This Unison posture adds to this section’s

build in intensity. This is an example of "language type synthesis" as discussed in

Section 3.2.2 [9, 39]. Once a climax is reached about halfway through this section,

Heretic fades outs its Sporadic Forming and Unison delay effect. I follow this fade-out

by reducing my note-onset density.

• 8: Following a brief pause, this section is short drum solo in which Heretic goes

silent.

• 9: After Heretic’s short lived bout of silence while I solo, Heretic joins my solo by

applying a different delay effect on my drums and by actuating a rapid sequence of

erratic synth instances. This intense moment of "mutual subversion" signals for me to

end my solo, and that a new formal section has arrived [5].

• 10: As this structural signpost of erratic synths ends section 9, there is a brief moment

of silence before I begin a rhythmic hi-hat pattern. Heretic interprets my use of fast
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rolls on the hi-hat and this pattern’s rhythmic nature as synthesis of Granular and

Pulse Formings. Therefore, Heretic uses a Unison posture of interaction to sonically

fuse with my hi-hat pattern by applying a spectral pitch-shifting effect to my real-time

sound. This effect uses RMS data from my playing the control its parameters, thus

mirroring my low-level phrase shape while adding a novel sonic character.

• 11: Section 10 suddenly comes to an end after I fade my hi-hat pattern to pianissimo.

Following this decrescendo I punctuate the phrase ending with a sharp cymbal attack,

marking the begin of section 11. After this sharp attack, I begin a soft drum roll that

leads into another Drone Forming. Heretic plays in Complement with this Drone

Forming by recalling the Drone Forming from section 5.

• 12: Heretic suddenly morphs its Drone Forming into a Bombastic Forming. I attempt

to follow Heretic’s Juxtaposition posture with a Sporadic Forming, but upon hearing

the climax of Heretic’s Bombastic Forming, I lowered the volume of my Sporadic

Forming to enable Heretic to take a Solo. The improvisation ends with Heretic and

myself fading to silence.

The above formal analysis confirms that Heretic’s interactions with a human performer

results in clear formal structures that "[emerge] from process" via my intended "bottom-up

approach" to generating form in free improvisation [44, 59] (Section 2.2.1). These formal

sections contain a wide variety of sonic characters, durations, and interactions, which adhere

to my aesthetic intentions of sonic cohesion/indeterminacy, macro-temporal irregularity,

"mutual subversion," and "musical coherence" [5, 62]. By achieving my intended aesthetic

values and by Heretic’s ability to "self-organize" during a performance with a human

performer, Heretic reflects Blackwell et al.s’ criteria for a true live algorithm: autonomy,

novelty, participation and leadership [6].
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4.2 Autonomy

Blackwell et al define autonomy as the ability for the live algorithm "to act and respond

to unknowable and unforeseen inputs in ways that have not be completely prescribed" [6].

Heretic obtains autonomy because its neural networks are able to classify untrained audio

signals into a definable language type model (Section 3.2.2), and it employs stochastic

modelling to make musical decisions based on what it hears from the human performer

(Section 3.3). Blackwell at al’s definition of autonomy is similar to Bailey’s concept of

"mutual subversion," where "mutual subversion" is formed by improvisers responding to

another improviser’s language in a subversive way that is not previously prescribed or

expected. This multi-layered framework for determining Heretic’s autonomous musical

output is demonstrated in section 12, where Heretic’s sudden departure from a Drone

Forming to a Bombastic Forming was not previously "prescribed," therefore challenging me

as an improviser to navigate this subversion. Another example of Heretic’s autonomy occurs

in section 10, where Heretic responds to the "unforeseen" input of my sudden rhythmic and

granular hi-hat pattern with a dynamic and smooth effect, a response that was unexpected

and "not completely prescribed" [6].

4.3 Novelty

Novelty is achieved by "[avoiding] the cliched and the obvious" when "supporting, leading, or

subverting" other musicians [6]. Heretic’s primary method of "[avoiding] the cliched" is via

the unique nature of its sonic voice. Heretic autonomously samples a large collection of my

hand-crafted audio samples, full pieces of music, and re-sampled/re-processed audio from

its own output. Heretic also uses the human performer’s real-time output as sonic material,

which is constantly changing due to the musical tendencies for improvising performers to

avoid repeating material from performance to performance (Section 3.4). Heretic’s flexible

Musical Synthesis module, wide variety of sounds, and how Heretic implements these
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sounds in an infinite amount of combinations with the human performer’s playing leads to a

sonic voice that "avoids the cliched and the obvious" [6]. A specific example of novelty is in

section 7, where Heretic uses a concatenative synthesizer through a multi-tapped delay line

to mirror my Sparse Forming with synthesized drum sounds. By adding a real-time delay

effect on my acoustic drum sounds while maintaining its delayed concatenative synthesizer,

Heretic is supporting this build in energy while also leading this phrase to a new direction

by adding a delay effect. The obvious method of supporting this phrase would have been

to simply increase the feedback parameter on the concatenative synthesizer’s multi-taped

delay lines. Heretic instead adds a non-obvious real-time delay effect to my drum sound to

increase the sonic complexity of this passage by mixing the sound of delayed synthesized

drums with delayed acoustic drums.

4.4 Participation

Blackwell et al’s participation quality consists of "supporting ongoing musical activity

by making contributions that do not detract from but rather enhance the current musical

direction" [6]. This quality is similar to Rowe’s concept of "musical coherence" in that it

describes a machine improviser’s ability to produce sounds that relatively fit the context of a

given musical state. Participation or "musical coherence" is achieved via Heretic’s ability

to contextualize low-level sounds from the human performer into a cohesive high-level

organization structure during a real-time improvisation (Section 2.2.1) [62]. One example of

Heretic participating in "ongoing musical activity" is in section 3, where it complements my

Granular Forming by actuating a granular synthesizer that samples no-input mixer sounds.

Heretic’s leaving of sonic space for me to take a solo in sections 2 and 8 exemplifies its

ability to "not detract from but rather enhance the current musical direction" [6]. Essentially,

whenever Heretic engages in a Unison or Complement posture of interaction, its using

the Interpretive Listening module to participate in and support musical gestures while not
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detracting from this musical gesture’s organic manifestation.

4.5 Leadership

Live Algorithms obtain leadership by "[attempting] to change the musical direction, to

invoke a new musical center" [6]. In this improvisation, Heretic shows leadership in sections

1, 9, and 11. In section 1, Heretic leads my playing from a Drone Forming to a Melodic

Forming by autonomously actuating a Melodic Forming at the performance’s onset. Heretic

"[changes] the musical direction" in section 9 by subverting and intervening in my Solo

posture of interaction with a series of erratic and obtrusive sound objects. This is also an

example of "mutual subversion" [5]. Heretic’s recalling of the Drone Forming from section

5 in Section 11 "[invokes] a new musical center" following my soft drum roll. This concept

of leadership reinforces Lewis’ concept of "emotional transduction" to take place [37].

When Heretic leads the improvisation into a new musical state, I must adjust my playing

to maintain "musical coherence" despite an unexpected change in musical state [37, 62].

Since Heretic is still interpretively listening to me as I navigate my way through Heretic’s

periods of leadership, Heretic is then making contextual decisions or engaging in "emotional

transduction" based on my reactions to its playing.

4.6 A New Live Algorithm

The above analysis and evaluation demonstrates that Heretic is a true Live Algorithm

according to Blackwell et al’s criteria, and adheres to the "aims of the designer," which

are inspired by the previous work of Blackwell et al, Bailey, Rowe, and Lewis [5, 6, 37,

52, 62]. Heretic interpretively listens to a human performer, contextualizing low-level

musical materials into a higher-level framework that enables a clear formal structure to

emerge its interactions with a human performer. Heretic’s Contextual Decision Making

module enables Heretic to autonomously participate and lead in novel ways, which enables
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"mutual subversion" and "musical coherence" to take place during an improvisation [5,6,63].

These Interpretive Listening and Contextual Decision Making modules sonically manifest

themselves in Heretic’s Musical Synthesis module via its flexible approach to a novel

musical output, thus enabling "emotional transduction" [37]. By objectively and aesthetically

evaluating Heretic’s musical output and interactions with a human performer, I can form

conclusions regarding my work with Heretic, and identify new directions in Live Algorithms

research and human-machine free improvisation.
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Figure 4.1: This figure’s top portion is a spectrogram of an improvisation by
Heretic and myself. This improvisation’s formal sections are labelled as seg-
ments as discussed in Section 4.1. The bottom portion is the recorded out-
put of the neural-network classifiers during the improvisation. Recording:
https://soundcloud.com/hunter-brown-music/heretic-full-1

68



5
Conclusions and Future Work

The motivation in developing Heretic was to create a Live Algorithm that employs my own

improvisational methodology as a conceptual and computational framework for human-

machine free improvisation. This motivation particularly centers around my interests in

Derek Bailey’s "mutual subversion," Robert Rowe’s "musical coherence," and George

Lewis’ "emotional transduction" [5, 37, 62]. Once establishing a motivation for creating a

Live Algorithm, the study of Cecil Taylor’s, Ornette Coleman’s, Joe Morris’, and Anthony

Braxton’s improvisational methodologies inspired me to formalize my improvisational

methodology before encoding it as a computational framework within Heretic [9, 44, 73].

From this study, my improvisational methodology borrows and re-imagines concepts from
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Morris’ Properties of Free Music, and Braxton’s Language Music due to their alignment

with my particular aesthehic sensibilities. However, considering Heretic’s role as a laptop

improviser and my background in electroacoustic music composition, I also borrowed

the following concepts when formalizing my improvisational methodology: Smalley’s

structural functions, Road’s theory of musical timescales, and Wishart’s sequences and

fields [59, 70, 79].

Upon developing a conceptual basis for creating Heretic, I begin researching previous

Live Algorithms as a means for learning how to implement these theoretical concepts into

a computer music system via the SuperCollider and Wekinator software platforms. The

work of Blackwell, Young, Bown, Lewis, and RepMus demonstrates a wide variety of

approaches for designing a Live Algorithm [6,35,37]. In particular, I re-imagined Blackwell

et al’s proposed PQF architecture as a triple-layer architecture consisting of modules for

Interpretive Listening, Contextual Decision Making, and Musical Synthesis [6]. These

three modules work together to form a computational representation of my improvisational

methodology while maintaining the motivational concepts of "mutual subversion," "musical

coherence," and "emotional transduction" in Heretic’s musical output [5, 37, 62]. Thus,

Heretic "listens, reflects, selects, imagines and articulates its musical thoughts as sound

in a continuous process" in a manner that serves my conceptual and aesthetic interests,

while also challenging me as its improvisational partner [6]. The sounds that Heretic uses

to "[articulate] its musical thoughts" are inspired by the music of Sam Pluta/Peter Evans,

Frank Rosaly, and Toshimaru Nakamura/Kim Cascone [6, 55, 61]. Heretic’s sonic voice is

inspired by these improvisers’ music because their work fits with my sonic interests in sonic

cohesion via live processing, unruly noise oriented feedback, drones, micro-sonic glitch,

varying rhythmic density, indeterminacy, and "failure" [11].

Once Heretic obtained the ability to express its musical voice autonomously, I began to

think deeply about my improvisational interactions with Heretic and how these interactions

fit with my intentions in developing this system. Chapter 4 details a formal analysis of
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an improvisation with Heretic using Blackwell et al’s evaluative framework of "autonomy,

novelty, participation and leadership" [6]. This analysis yielded the conclusion that Heretic’s

output adheres to Blackwell’s et al defining criteria of a Live Algorithm and my musical

and aesthetic intentions as defined in Chapters 1 and 2. However, what are the conclusions

to be drawn from my personal experience as a human musician performing with Heretic?

Was I able to predict what Heretic was going to do next? Was Heretic challenging me to

spontaneously create novel musical materials and sequences? Is Heretic musically gratifying

to perform with?

I found that Heretic’s ability to achieve "mutual subversion" challenged me greatly as an

improviser. I never knew what to expect from moment to moment, therefore I found myself

playing musical material on the drum-set that I had never played before. I believe this is

because that by being pushed out of my musical comfort zone, I was forced to spontaneously

adapt to the given musical context with novel musical materials. This is a quality I look for

in other human musicians that I improvise with. For me, the whole purpose and beauty of

free improvisation is to enter mental states that enable truly novel and idiosyncratic musical

interactions to take place. By way of these idiosyncratic musical interactions, the resultant

music is likely to be music that has never been played before. As a musician, creating

previously unheard music is at the crux of my overall goals as an artist. Heretic’s ability to

enable this kind of free improvisation to take place is a testament to its effectiveness as a

Live Algorithm.

However, would other improvisers feel the same way playing with Heretic? While

Heretic is primarily designed to serve as a musical device for my own improvisation practice,

future work with Heretic will focus on re-imagining Heretic’s design to work with other

performers. Ideally, Heretic could function as a way for other improvisers to interact

with my improvisational methodology within the world of interactive electroaouctic music.

This would involve redesigning the Interpretive Listening module to easily adapt to any

instrument without retraining its neural networks. Currently, one could retrain the language
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type classifiers to hear any musical language, however I think it would be worthwhile to

find methods for enabling Heretic to interact with any instrument and any improvisational

methodology without a priori training on the particular musical language of the person it is

performing with. Aside from extending Heretic’s Interpretive Listening module to robustly

interact with any instrument without prior training, I think it would be interesting to extend

Heretic’s functionality to include interactions with groups of improvisers.

Most of the Live Algorithm’s discussed in Chapter 2 have mainly been used in duo

musical contexts with a solo human performer. Further iterations of Heretic will include

functionalities that enable Heretic to participate within varying instrumentations and combi-

nations of improvisational languages. In particular, it will be important for Heretic to alter

its Interpretive Listening and Contextual Decision Making modules depending on the size of

the ensemble and the instrumentation of the ensemble. For instance, if Heretic knows that

it is performing in a large ensemble, it will have to intrepretively listen to each individual

member of the ensemble and the collective output of the ensemble to better formulate its

Contextual Decision Making process. The future possibility for Heretic to function in group

improvisation will present more combinations of complex interaction with multiple human

performers simultaneously, thus resulting in more idiosyncratic interactions amongst the

other human performers via "mutual subversion" and "emotional transduction" [5,37]. Simi-

lar to how Heretic is currently trained on my musical language, I am especially interested in

the possibility for Heretic to learn and interact with a collective group’s musical language.

Playing in a duo setting versus a group setting is a much different experience and practice,

and by further developing Heretic to function in a greater variety of musical settings, I

believe there is potential for interesting, challenging, and aesthetically gratifying improvised

music making to take place.

The process of creating a Live Algorithm modelled after my own improvisational

methodology has forced me to deeply examine my own musical practice. This journey

has also enabled me to form a deeper understanding of improvisation at large, and how
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computers can act autonomously in musical settings. In his text Towards an Ethic of

Improvisation, Cornelius Cardew wrote, "This kind of thing happens in improvisation. Two

things running concurrently in haphazard fashion suddenly synchronize autonomously and

sling you forcibly into a new phase" [10]. Heretic and I are "two things running concurrently"

during a performance, and within our long term collaboration [10]. Both of our musical

languages are in perpetual concurrent growth that enables us to collectively enter "a new

phase" of music making during each performance [10]. Through our collective musical

language, Heretic and I are "[synchronizing] autonomously" as improvisation partners. This

synchronization of our musical languages enables Heretic and I to spontaneously create

novel and idiosyncratic music that pushes the boundaries associated with improvised music

and expands our abilities as individual improvisers.
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